A Fast Automaton-Based Method for Detecting Anomalous Progam Behaviors

R. Sekar M. Bendre D. Dhurjati P. Bollineni
State University of New York lowa State Univeristy
Stony Brook, NY 11794 Ames, IA 50014
{sekar,mbendre,dinakar}@cs.sunysby.edu pradeep@cs.iastate.edu
Abstract contrast with users, programs tend to have more narrowly-

defined behaviors. This enables more accurate learning of
Forrest et al introduced a new intrusion detection ap- normal behaviors, and thus improves the accuracy of intru-
proach that identifies anomalous sequences of system callsion detection.

executed by programs. Since their work, anomaly detection Eqrrest et al’s [5] approach characterizes normal pro-
on system call sequences has become perhaps the most sugram behaviors in terms of sequences of system calls made
cessful approach for detecting novel intrusions. A natural py them. Anomalous program behavior produces system
way for learning sequences is to use a finite-state automa-ca|| sequences that have not been observed under normal
ton (FSA). However, previous research seemed to indicatepperation. In order to make the learning algorithm compu-
that FSA-learning is computationally expensive, thatitca tationally tractable, they break a system call sequenee int
not be completely automated, or that the space usage ofsypstrings of a fixed lengttv. These strings, called/-

the FSA may be excessive. We present a new approach igrams, are learnt by storing them in a table. In practi¢e,
this paper that overcomes these difficulties. Our approach myst be small (I5] suggests a value of 6) since the number
builds a compact FSA in a fully automatic and efficient man- ¢ N-grams grows exponentially wittV. Figure 1 illus-

ner, withoutrequiring access to source code for programs. trates theV-grams associated with a simple program, where
The space requirements for the FSA is low — of the order of 3 yajue of ' = 3 has been used for illustrative purposes.

a few kilobytes for typical programs. The FSA usesonlya \ qrayhack of using small values of is that the learn-
constant time per system call during the learning as well as ing algorithm becomes ineffective in capturing correlatio
detection period. This factor leads to low overheads for in- among system calls that occur over longer spans. For in-
trusion detection. Unlike many of the previous techniques,stance’ the program in Figure 1 will never produce the se-

our FSA-technique can capture both short term and long quences, Ss S, 5-. However, the trigrams in this sequence

term temporal relationships among syst_em calls, and thus(SoSgS4 and 555, 5,) are produced by the program, and
perform more accurate detection. For instance, the FSA hence theV-gram learning algorithm would treat this se-

can ca}pture C?mn_}(r)]r_w progr;;}m structures Suﬁht as branclhesquence as normal. The second difficulty with tkiegram
JO”;S’ Og_p? fetc. b|shen_a e;s our ap?faﬁ 0 genFe(z)ra_|ze algorithm is that it can recognize only the set/éfgrams
and predict future benaviors rom past benaviors. Forin- qnqqntered during training; similar behaviors that pielu

stance, if a program executed a loop once in an EXecUtion, gl variations in theév-grams will be considered anoma-

the FSA approach can generalize an(_j pred_ict that the SaMmeg s, [8] reports that this lack of generalization in the
Ioop_may be executed zero or more “”785 in subsequent eXf;ram learning algorithm leads to a relatively high degree of
ecutions. As a result, the training periods needed for our false alarms.
FSA based approach are shorter. Moreover, false positives) _) .
are reducedvithoutincreasing the likelihood of missing at- _An alternative approach for I_earnmg strings |s_to use
tacks. This paper describes our FSA based technique anJ'n'Fe'St_at? automata (FSA). Unlike tié-gram algorithm
presents a comprehensive experimental evaluation of theWh'Ch limits both th_e I_en_gth and number of sequences, an
technique. FSA can captl_Jrean_ |nf|n|te number of sequences of arbi-
trary lengthusing finite storage. Its states can remember
shortandlong-range correlations. Moreover, FSA can cap-
. ture structures such as loops and branches in programs —
1. Introduction by traversing these structures in different ways, itis jines
to produce new behaviors that are similar (but not identical
Forrest et al [5] demonstrated that effective intrusion de- to behaviors encountered in training data. In spite of these
tection techniques can be developed by learning normal pro-advantages, experience with finite-state-based learraag h
gram behaviors, and detecting deviations from this norm. In been mostly negative:

www.manaraa.com

1. SO;
2. while (..) {
3. S1;
4, if (...) S2;
5. else 83, 505152 515254 525455 535455 545551 525551 555152
6. if (S4) ...; Sp 5153 S1535s 525452 S354S3 545553 525553 S55153
7. else 82, 505354 545255 555354
8. S5;
9. }
10. S3;
11. S4;
Figure 1. An example program and associated trigrams. S0,...,S5 denote system calls.

Figure 2. Automaton learnt by our algorithm for Example 1

o Several researchers [25, 14] have shown that the prob-an overview of the FSA-based learning algorithm and sum-
lem of learning compact FSA is hard. For instance, marize its benefits.
[14] show that learning approximately optimal FSA is
as hard as integer factorization. 1.1. Overview of FSA Algorithm and its Advantages

¢ [16] describe a methodology for learning system calls
using finite-state automata. However, no algorithm
is provided for constructing FSAs from system call
traces. Instead, they rely on human insight and in-
tuition to construct FSA states and edges from se-

The central difficulty in learning an FSA from strings
is that the strings do not provide any direct information
about internal states of the automaton. For instance, if
we observed an execution of the program in Figure 1 and
witnessed a sequence of system call$; 5-5455..., we
quences. would not know whether to treat the two occurrences$of
to be from the same automaton state or not. It is this key
problem that leads to the difficulties in efficient learnirfg o
automata from string examples.

The key insight behind our technique is that we can in-
deed obtain state-related information if we knew pve-
gram statet the point of system call; and that the very same
operating system mechanisms that can be used to trace sys-
Against this backdrop of negative results regarding FSA- tem_calls can also be used to obtain the program state infor-
based learning, we present a new, positive res@iom- m_at|on._ When the above _system c_aII sequence is augmented
pact FSAs characterizing process behaviors can be learntWith point-of-system-call information, we obtain:
fully automatically and_ efficiently_(Nhereas [30] concluded S S1 Sy Sa S
that the N-gram algorithm provides the best overall per- @ —————
formance among many different algorithms, our results
show that the FSA-algorithm further improves detection Based on the program state information, the FSA-algorithm
and training performance significantly. Below we provide will learn the automaton shown in Figure 2 from the above

e [30] studied several learning algorithms, including
those based on the Hidden Markov Models (HMM)
[26] that are similar to FSA. In their experiments,
HMMs incurred large overheads for learning, while
improving detection accuracy over thé-gram algo-
rithm only slightly.

www.manaraa.com

program. The example provides the basis to illustrate the
advantages of the FSA-algorithm.

o Faster learning. The following two execution se-
guences suffice for learning the complete automaton
shown in Figure 2. In contrast, they contribute only 11
of the 17 trigrams (65%) learnt by -gram algorithm.

In our experiments, FSA learning convergaad order
of magnituddaster than thév-gram learning.

Better detectionUsing program counter information,

it is possible to detect some classes of attacks that
elude algorithms that do not utilize such information.
(See Section 4.5 for further discussions.) Even without
the program counter information, the state-sensitive
nature of the FSA-algorithm will enable detection of
attacks missed by th&-gram algorithm. For instance,
the trigrams in the system call sequertes.54.5, all
occur during normal execution of the above program
and hence thé/-gram algorithm cannot detect this se-
guence as anomalous. However, the FSA-algorithm
will detect that the program does not produce this se-
guence.

Reduction in False Positive®eduction of false posi-
tives depends upon the ability of a technique to gener-
alize past behavior to predict future behavior. In par-

ticular, on seeing the second of the above execution se-

guences, the FSA-algorithmis able to learn the branch-
ing structure of the program, and is able to predict that
these branches may be combined in other ways, lead
ing to an infinite set of strings such as:

So 51 53 S4 S5 53 Sa

3 5 6 8 1011
So 51 52 5S4 52 S5 53 Sa

3 4 6 7 8 1011

Compact representatioifinite-state automata provide

a very compact way to represent the large (typically

infinite) set of execution traces that can be produced
by a program. For instance, the trigram representation
needs to represent 51 system calls in the model. The
corresponding measure in the automaton is the num-
ber of edges in it (with each edge being labelled with

the FSA. Itis clear that matching using the FSA takes
constant time per system call, and this time is fairly
small (less than a hundred instructions). In contrast,
each system call execution typically involves several
hundreds of instructions, thus the overhead of match-
ing using the automaton is small.

1.2. Related Work

Intrusion detection techniques can be classified into two
classes:misuse detectioand anomaly detection Misuse
detection techniques [29, 23, 17] model known attacks us-
ing patterns (also known as signatures), and detect them via
pattern-matching. Their benefit is a high degree of accuracy
and their main drawback is the inability to identify novel at
tacks. Anomaly detection techniques [1, 5, 20, 24, 4, 8]
address this problem by flagging any abnormalities in user
or system behavior as a potential attack. One of the main
research problems in anomaly detection is that of learning
normal user or system behaviors. We focus our discussion
below on anomaly detection techniques most closely related
to our approach.

Approaches Based on Learning Program Behaviors.
The use of system call sequences to model program behav-
iors was first suggested by Forrest et al [5]. [16] proposes
to increase the accuracy of tiié-gram learning algorithm

by using an FSA representation. However, no algorithm is
provided for FSA construction; instead, a manual procedure
is employed. [18] describes an algorithm for constructing
finite-state automata from strings, but their algorithnatse

only strings of a finite length. Thus, their approach learns

tree-structured automata. The problem of learning tree au-
tomata is computationally much simpler than a general FSA
that contains cycles.

[30] studies four different algorithms for learning pro-
gram behaviors. Of particular interest was a data-mining
based algorithm suggested in [20]; and the Hidden Markov
Model (HMM), which is a finite state model widely used
in speech recognition. They concluded that HMMs provide
slightly increased accuracy, but the length of training re-
guired made them unattractive for intrusion detection.iiThe
overall conclusion was the th€-gram algorithm provides
the best combination of low training periods, high detattio

a system call), and this number is only 13. Our exper- atés and low false ppsitives. _ As compared to these al_go-
iments show that a factor of 3 to 4 reduction in space rithms, the FSA learning algorithm possesses the following
utilization over the6-gram algorithm. (We note that —2advantages:

in absolute terms, space requirements are modest for

both theN -gram and the FSA-algorithms.) ¢ It does not limit the length or number of system call

sequences: entire sequence produced by each run of a
program is learnt by the FSA. This factor will likely
contribute to more accurate intrusion detection.

Fast detection. Intrusion detection using the FSA
model requires matching system call sequences using

www.manaraa.com

¢ It captures the branching and looping structures of the work either: the relative locations of functions across two
program, thus enabling us to recognize typical varia- different libraries can vary from one run to another.
tions in behaviors of programs. This factor will likely The second difficulty is that most programs make heavy
reduce false positives. use of library functions, which in turn make several system

])] . calls. For instance, consider a simple program:
e It is capable of learning program behaviors while

“leaving out” behaviors captured by library functions. ™ n() {

This can lead to smaller storage requirements. It can ' n_t ch; _

also contribute to shorter training periods since we do ~ Whi e ((ch = fgetc(stdin)) >= 0)
not waste time in learning the behavior of libraries. fputc(ch, stdout);

Static Construction of FSA. We note that the FSA learnt Itwould be better to capture the behavior of this program
by our approach Captures program structures that are sim-as ConSiSting of read and write System calls made from the
ilar to those captured by control-flow graphs used in com- Main program. However, if we used the program counter
pilers. Thus it is possible to develop compile-time analysi value at the time of actual system call, no information about
techniques to learn the FSsatically,without any runtime the structure of the main program will be captured. Instead,
training. A disadvantage is that interprocedural analysis We would be capturing the structure of the library functions
especially in the presence of libraries that are dynamyicall — in fact, since every “system call” invocation is actually
linked (and hence unavailable at compile time) poses non-made from within a library function withihi bc, the au-
trivial problems. An alternative is to develop link-timean tomaton will capture no useful information about the struc-
ysis of object files and libraries to construct the FSA. We ture of the main program. As a result, the automaton learnt
are currently studying this approach. Even if this approach Will remain very similar across different programs, since
were to be successful, runtime construction, as proposed irlibrary code used by most programs are identical. In or-
this paper, would still have additional information to offe ~ der to capture the behavior of the program, it is necessary
In particular, a learning algorithm that constructs the EBA tO record the location from where the library function was

runtime can incorporate information about frequency of ex- called, rather than recording the location within the ligra
ecution. This information is unavailable in a compile-time code from where a system call was made. We describe our

or link-time approach. approach for doing this below, after a brief discussion ef th
system call interception mechanisms we use.

2. Learning Finite-State Automata 2.1. System Call Tracing

Our learning algorithm is based on tracing the system Several approaches have been proposed for system call
calls made by a process under normal execution. As eachracing over the past several years. Some of these tech-
system call is made, we obtain the system call name as welhigues involve modifications to the operating system kernel
as the program point from which the system call was made as in [7, 6, 19]. The primary benefit of a kernel-based ap-
(given by the value of the program counter (PC) at the point proach is speed, while its disadvantage is the need to mod-
of system call). Each distinct value of the program counter ify the kernel. Other approaches such as [13] make use of
corresponds to a different state of the FSA. The system callsthe process tracing capability provided by most versions of
correspond to transitionsin the FSA. To constructthe frans UNIX in order to perform system call interception at the
tions, we use both the current pair8f=*", and the previ- user level. We used the second approach in this work.
ous pair,£rev2usCall The jnvocation of the current system Most versions of UNIX provide a mechanism by which
call SysCall results in the addition of a transition from the one process can trace the system calls made by another pro-
statePrevPC' to PC that is labelled withPrevSysCall. cess. Programs such asr ace, truss andpar utilize
The construction process continues through many differentthe low level OS mechanisms and provide a command line
runs of the program, with each run possibly adding more interface for recording system calls. Previous researtath s
states and/or transitions. Figure 3 illustrates this pgsce as [5], utilized such programs to record system calls in alog

The simple algorithm outlined above can deal with stati- file, and then used an offline learning algorithm. In our ap-
cally linked programs, but does not always work for dynam- proach, we directly make use of the OS mechanisms. The
ically linked programs. The key difficulty is that the value key benefits are that we are able to use additional infor-
of program counter cannot be relied upon, as the same funciation (e.g., the contents of the registers and the stack of
tions may get loaded at different locations in a dynamically the traced process) that is available at the level of the OS-
linked program. One may try to use relative values of pro- provided mechanisms, but not made available by the above-
gram counters instead of absolute values, but this does notnentioned applications.

www.manaraa.com

scl sc2 sc3
pcl pe2 pe3
scd sc3 sc4d sc3

pcl pe3 pel pe3

Figure 3. Two traces produced by a program and the generated a utomaton

2.2. Keeping Track of Different Sections of Code erwise, we move to the next stack frame (corresponding to
the next outer procedure invocation) and repeat the same
The general problem is to trace back each system call toprocess.
the innermost function call that was made from certain re- We observe that this approach will not work satisfacto-
gions of memory. Note that most libraries are linked and rily if the statically linked portion of the code itself caihs
loaded dynamically, and that the non-library components library functions, or wrapper functions that have been in-
are statically linked. We therefore trace back all system troduced for portability. In those cases, the FSA will learn
calls to statically linked code sections. the location within the library from where a system call is
The first step in tracing back is to identify code sections made.
that are statically linked. Our approach for doing thisesli
on (a) the structure of the ELF (Executable and Linking For-
mat) format used in Linux and most other UNIX systems,
and (b) tracing system calls used to load the dynamically
linked libraries. The range of addresses of the statically Thef or k andexec system calls require special atten-
linked code segment is obtained from the header informa-tion, since they create copies of a running process or change
tion in the executable file. For the addresses of dynami-it altogether. A corresponding change has to be made to the
cally linked regions, we note that in Linux, the dynamically FSA being learnt for the program.
linked code is loaded using tremapsystem calls. From The fork system call causes the process to create a copy
the return value of this system call, and the size argumentof itself. We use the same FSA to capture the behavior of
provided to this system call, we can obtain the addressesthe child as well as the parent. Unless the fork system call

2.4. Dealing withf or k/ exec

corresponding to the dynamically linked libraries. is followed byexecve, the child process usually performs
the same tasks as that of the parent (e.g., servicing more re-
2.3. Stack Traversal quests in a http server) and so this can be justified. After

the fork, subsequent system calls made by either the par-

Procedure calls are implemented using a process stackent or the child is added as a transitions to the same FSA.
The stack is partitioned into maractivation framesgach This requires us to keep track of all the current states cor-
of which correspond to an invocation of a procedure. The responding to the parent and all of the children processes.
innermost active procedure invocation corresponds to theWhen one of these processes makes a system call, an edge
top-most frame on the stack. An activation record stores in- is added from the current state of this process. At intrusion
formation such as the return address, procedure parametergetection time, we follow a similar procedure.
and local variables of the procedure. Both the caller and When anexecve system call is made, we need to de-
the called procedures need to access the return address ardde whether the system calls of the new program (to be
parameters. Hence the structure of the activation recordsexecuted) are to be learnt using the same FSA, or to use a
as well as the location of these fields within the activation different FSA. In the former case, an FSA thatis customized
record are standardized, even across different programmin for this particular execution of the new program is created.
languages. This would enable us to capture, for instance, that when a

Based on the above structure of the stack, tracing backprogram A executes another program B, it uses B’s func-
of the system call can proceed as follows. We examine thetionality in a restricted way. For instance, a program may
value of the program counter (which is saved by the proces-spawn a shell, which may in turn be used to execute a spe-
sor when the trap instruction to switch to the kernel mode cific script; but the full functionality of shell is not acceel.
was executed) and see if it is from the statically linked por- In the latter case, we retrieve the FSA that has been learnt
tion of the executable. If so, we are done. Otherwise, we so far for the programexecve’d, and start augmenting this
examine the topmost frame on the stack, and extract the reFSA to incorporate the sequence of system calls observed in
turn address information. If this address corresponds to athe current execution. Currently, we use this second option
statically linked region of the program, we are done. Oth- as the default.

www.manaraa.com

5000 | *x 7000 | I
e 6000 T
4000 f T | e
? <~ % 5000 |
)] x g\ X
2 3000} @ 4000 -
8 8 "
® 2000 f] o 3000F |
2000 W
1000 [W—o—o—o—k—#—O’-’H‘_‘_’—‘—‘—‘—t
‘ FSA method—— 1000 FSA method—— |
0) {__N-gram method—— | 0)) |__N-gram method-—>- |
1000 10000 100000 1e+06 1000 10000 100000 1e+06
System calls System calls
Figure 4. Convergence on NFS Server. Figure 5. Convergence on FTP Server
3. Runtime Monitoring for Intrusion Detection Several different kinds of anomalies are recognized by

the method described above. Our method associates dif-
ferentweightswith different kinds of anomalies. Instead
of incrementing the anomaly count by one, we increment
it by the weight associated with the anomaly observed. The
weight associated with stack corruption anomaly is set to be
high enough that even a single occurrence of the anomaly
« Obtain the corresponding location (within the stati- will be flagged as an intrusion. The weight associated with
cally linked section of the program) from where the a missing program state is smaller, such that several succes
call was made. If an error occurs while doing this, it sive occurrences of these anomalies must occur before the
would be because the stack has been corrupted, possithreshold for flagging an intrusion is reached. The weight
bly due to a buffer-overflow attack. associated with a missing transition is higher if the system
call corresponding to the transition appears nowhere in the

» Check if there exists a transition from the current staté A, Otherwise, the anomaly weight is set to be the same
to the new state that is labelled with the system call 55 that of a missing state.

name that was intercepted. If not, there is again an
anomaly. Anomalies of this kind may arise either due
to attacks, or because of unusual behavior of the pro-
gram that had not been observed during learning.

Matching runtime behavior to the automaton proceeds as
follows. At any point during runtime, the state of the match
would be captured by eurrent stateof the FSA. For each
system call intercepted, we proceed as follows:

4. Experimental Evaluation

To evaluate the FSA-based algorithm, we considered
¢ Update the state of the automaton to correspond to thesecurity-critical server programs such fgd, httpd, nfsd
new state. If the new state is not in the automaton, andt el net d. Telnetd was later eliminated since its be-
transition to a “sink” state in the FSA havior was extremely simple and predictable. Among the
i i i i other three, ftpd appeared to have the most complex behav-
To ensure that isolated mismatches do not immediatelyjs sypporting 70 different operations. nfsd was modéyate
result in an intrusion being flagged, a leaky bucket algo- complex; supporting 17 operations. httpd supports only a
rithm is typically used (as in [5, 9]) to aggregate anomalies gma|| number of commands, but is comparable in complex-
over time. Each time an anomaly is detected, an anomalyi, 1o NFS server. Our evaluation addresses the following

count is incremented. When the anomaly count exceeds gyetrics and compares them with those of ffiggram algo-

threshold, an intrusion is flagged. The anomaly count is jihm: convergence of learning, false positive rate, mmati
_decremented pe_rlodlcally, which has the effect of ignoring 44 space overhead, and attack detection efficacy.
isolated anomalies. All the results presented in this section were obtained
INote that the FSA is not “stuck” in the sink state: as soon agtio- for Linux running on a 266MHz Pentium Il processor with
gram execution returns to a location that had been obsemwaglearn- 32MB RAM and 3GB EIDE disk. For comparison pur-
ing, the automaton would tra_nsmon tp that state from tind state. Thus, poses, we implemented tHé-gram algorithm from [5]
the use of program counter information enables the automtattresyn- L
chronize” with the program even if synchrony is lost momeittaiue to This implementation usestee data structure, which is the
execution of new code. most compact data structure for representing large collec-

www.manaraa.com

tions of fixed-length strings. 5000
We used the following procedure for conducting these 4z, | s

experiments. Most of our experiments were conducted us- 4000 L T <

ing training scripts that attempt to simulate the requests 3500

likely to be handled by each of these servers. Some exper-

iments involving the http server were conducted on a Iivg 3000

web server handling requests. While it would have beey 2°00|

better to run all of the tests on live servers, such an approag 2000

was impractical for us because we did not have access to 1500

systems that experienced large enough volumes of traffic to 1000 |

enable us to conduct such experiments. We present our re- sgg |- ; FSA method ——
sults on live servers in Section 4.4, while the followingér 0 ‘ ..N-gram method: - f
sections discuss results obtained using training scripts. 1000 10000 100000 1e+06

System calls

4.1. Convergence)
Figure 6. Convergence on HTTP.

We measured convergence in terms of the space required

for storing the automaton (for the FSA-algorithm) or the = 01) ' FSAmethod

N-grams (for theN -gram algorithm). These figures were (é N-gram method:—c- :

plotted against the number of system calls made by the pro- g 0.01f

gram being learnt. The graphs use a linear scale on the Y- 2

axis (size of automata d¥ -gram storage) and a logarithmic g 0.001

scale on the X-axis (number of system calls). In comparing g

the two algorithms, the actual Y-axis values are not impor- :% 0.0001+

tant: what matters for convergence is whether the curves & R

flatten out quickly. 8 leosl -
For these experiments, we used training scripts that gen- &

erated commands to exercise the servers. The training 10.06 ‘

scripts for FTP and NFS were locally developed, while 1000 10000 100000
we used the WebStone benchmarking suite to exercise
HTTP server. These scripts generate a random sequence
of mostly valid commands, interspersed with some invalid Figure 7. False Positives on NFS Server.

commands. These commands involve files of sizes rang-

ing from 500 bytes to 5MB. The distribution of these com- . db der of itude b d thi .
mands (and file sizes) is set to mimic the distributions ob- was Increased by an order o magnitude beyond this point.
served under normal operation. The N -gram algorithm converges much more slowly.

The training scripts were used to generate larger and Faster convergence of th? FSA algorithm is dug to two
larger sequences of commands in successive runs. Théacto_rs. First, the ESA algorithm Iearns_the branchmg and
server behavior observed during each run was learnt using]O()p'ng s_tructure_zs in the program. As illustrated with an
the FSA andN-gram algorithms. The initial run included _example In Sect|(_)n 1.1, this factor enables program pehav-
very few commands, typically resulting in about a thousand iors to be learnt in fewer runs. The second reason is due

system calls made by the server. The final run was about gto the fact that our algorithm does not preserve the order of
million system calls system calls made from libraries. For instance, if a library

function f is called by the program from a locatidn the
_ _ FSA would contain several edges frafrto itself, each la-
4.1.1 Discussion belled with one of the system calls made hyAs a result,

Rate of convergence is an important factor that governs thevarlatlons in the order of system calls made from libraries

L . . will not produce changes to the FSA.
amount of training time needed to achieve a given level of
false positives. The slower the convergence rate, the fonge -
the training time would need to be. 4.2. False Positives
For all three servers, the FSA algorithm converged
around a few hundred thousand system calls, and did not To determine false positives, we trained the system with
learn any thing new even when the number of system callssystem call traces of different lengths, starting from abou

le+06 le+07
Training Period (# of System calls)

www.manaraa.com

1 : : Application | N-gram Algorithm | FSA-algorithm
= FSA method——
§ | N-gram method---——- | FTP 7.1 2.4
£ 01} B 1 HTTP 4.8 14
] NFS 54 12
® 00Lf I 1
< & Figure 9. Space Requirements (in KB) for
§ 0.001¢ 1 N-gram and FSA-based algorithms.
8 0001}] _ _
@ Sl rithms for the three servers. The figure shows that both algo-
S 1e-05} e] rithms are economical in terms of space usage. FSA-based
algorithm improves on the space utilization of the N-gram
1e-06 : : algorithm by about a factor of four.
1000 10000 100000 1e+06 1e+07

To measure runtime overheads, we first split the over-
head into two parts: (a) overhead due to execution of learn-
ing and/or detection code, and (b) overhead due to sys-
tem call interception. We measured the two components
independently. The overhead due to execution of learn-
5K and ending at about 8M system calls. After training ing/detection code was between 3% and 4% for all of the
with each trace, the system was run in a detection modethree applications. The overhead for tNegram based al-
against another system call trace consisting of between Ilgorithm was also about 3%.
and 10M system calls. This trace was produced with the The overhead due to system call interception is depen-
same program as used for training, but with a slightly dif- dent on the mechanism used for this purpose. Techniques
ferent distribution of commands (and file sizes). This was that intercept system calls within the kernel introduce low
done to account for the fact that things can (and typically overheads. User-level mechanisms for interception of sys-
do) change between the learning and detection times. Theem calls, such as the one used by [5] and us, incur signifi-
exact same system call traces were used to train and analyzeantly higher overheads. This is because of additional task
the FSA andV-gram algorithms. switches required (between the server process and another

For the FSA algorithm, each occurrence of a state or process that is intercepting its system calls) for eachesyst
edge that was not present in the FSA was treated as a falseall. Moreover, every access to server process memory by
positive. For theN-gram algorithm, each occurrence of the monitoring process (between 3 to 8 such accesses are
a new N-gram (which has not been learnt during train- made by the FSA learning algorithm) incurs the overhead
ing) was counted as a false positive. Clearly, more sophis-of a system call. As a result, the overhead due to system
ticated thresholding techniques (such as the leaky buckefcall interception in our implementation is as high as 100%
algorithm) could be used to detect attacks while reducing to 250% in terms of CPU time. Aat r ace-based imple-
false positives. However, there is no easy way to choose thementation such as that used by Forrest et al in tNegram
parameters, such as the threshold value. Moreover, the optearning algorithm, introduces overheads in the same range
timal parameter values would likely be different for the two (100% to 250%).
algorithms. Rather than spending our efforts in a search for
thresholding techniques optimized for each of these algo-4.4. Results on Live HTTP Server
rithms, we decided to use this simpler measure.

Figures 7 and 8 show the number of false positives re- |5 this section, we present the results of a compar-
ported by each algorithm. It shows that the FSA algorithm ative experiment involving a live web server. This ex-
uniformly produces fewer false positives than thegram periment was performed on http server of the Secure
algorithm. The false positive rate of the FSA algorithmdall g4 Reliable Systems Laboratory at SUNY, Stony Brook
below 10~° after a training period corresponding to about (http: //secl ab. cs. sunysb. edu/). This site runs
10° system calls. Thev-gram algorithm continues to pro- - an apache web server, and experiences of the order of 3000
duce false positives at a higher rate (in the rangedof' to hjts a day. The web site consists predominantly of passive

Training Period (# of System calls)

Figure 8. False Positives on FTP Server

10~?) even after training with ovet0® system calls. HTML and image files. A minority of requests involve user
_ authentication, forms and CGI scripts.
4.3. Runtime and Space Overheads One of the difficulties in using a live web server is that

the experiment can no longer be conducted in a controlled
Figure 9 shows the runtime storage requirements for rep-setting. The requests processed by a live server can vary
resenting the behavior learnt by the FSA a¥iehjram algo- widely from one day to the next, and thus, we cannot com-

www.manaraa.com

8000 : : 0.01 e : : :
= FSA method——
7000 | e O % N-gram method-—-—- ;
T =
6000 ?,,i
—_ @ 0.001f
9 5000 f P 5
% fa
S 40001 @
3 ¢
©» 3000 B
8 00001}
2000 | 1 2
M L(E
1000 j FSA method——]
i N-gram method--—=—— s
0 ‘ : 1e-05 : t
100000 1e+06 10000 100000 1e+06 1e+07
System calls Training Period (# of System calls)
Figure 10. Convergence on Live HTTP Server Figure 11. False Positive Rate on Live HTTP
Server

pare false alarms observed on one day with that observed |)
on the next day. We therefore decided to run thegram POint of freezing.

and FSA algorithm side-by-side, so that they both make use ~ 1is approach meant that at any time, a system call made
of the exact same data. by the web server was processed by seven copies dfthe

gram algorithm and by another seven copies of the FSA-
algorithm. The entire process was repeated once more, and
the results were averaged. (Given the rate of requests re-

rate. The training period was gradually increased, and theceived at our web server, this experiment took about three

false positive rates were plotted as a function of the tragjni weeks to complete.) _ _ -
period. The results of our experiment is shown in Figures 10 and

11. In terms of space requirements, we found that the FSA-
algorithm used 1.6KB, while thé/-gram algorithm used
7.3KB. Note that these results obtained with the real web
server are generally similar to those observed with trgjnin
scripts. In particular, the difference in the rate of conver

used a training sequence of 20,000 system calls. On the secgence 1 similar to th(_)se observe_d_ before. Slmll_arl_y, the
differences observed in false positive rates are similar —

ggl(ljsdab)lljtvi\{[emrgayuljrsneoauir?rllr;ltntizerguirel(:sorfeigi\?gg zﬁs,:ﬁg}he false positive rate of the FSA-algorithm is between 6 to
' y q 30 times lower than that of th&-gram algorithm. How-

second day were all very similar. As a result, it is possible th diff I the ratio of fal
that more of the server behavior was learnt after the 20,000ever' ere are some difierences as Wetl. he ratio of faise

system calls seen the first day, as compared to what Wa@ositive rates d_oes not in<_:rease With the training peried, a
learnt after 40,000 system calls the second day. If this were"' 23 observed in the previous experiments. More_over. the
to happen, it will lead to anomalies in the graphs, which abs_olute V"?"”es of false positive ra_tes are mU(_:h _hlgher._ we
would make it very difficult to understand the convergence attrl_bute this to the fact tha’; there is more var_la_tlon ”E.“V

or false positive rates of these algorithms. To avoid such antra_frIC than what could be simulated using ”"?"”'”9 scripts.
anomaly, we used the following approach. The first 20,000 This means that both approaches produce higher false pos-

system calls were used to learn a (FSAVbrgram) model. itives. Moreover, if new types of requests thgt_we_zre never
A . . experienced before arrive at the web server, it is likely tha
copy of this model was made, and it was frozen. Subse-

L . both approaches would generate the same number of false
guent system calls were learnt by the original model until . . . : .
we reached 40,000 system calls. At this point, another COpyposnwes. Thus, the ratio does not increase as with the-trai
was made and frozen, while the original model continued ing script based approach.
to learn subsequent system calls. This process was contin-]
ued until we processed about 1.5 million system calls. Each4-5- Attack Detection
frozen version of the model was used to perform false pos-
itive analysis on system calls made by the server after the e Buffer overflow attacksAlmost all buffer overflow at-

In our experiments, we trained each system for a partic-
ular number of system calls, and then ran the system for
an extended period of time to compute the false positives

One would expect that the false positive rate would fall
monotonically with the increases in training period. Ob-
serve, however, that with a live web-server, this need not be
true. It is possible that the web server received many differ
ent kinds of requests on the first day of training, when we

www.manaraa.com

tacks involve execution of system calls by code run-
ning in the stack segment. Our approach will always
detect such attacks since it will observe a corrupted
stack frame. We have verified this assertion experi-
mentally with a version of FTP server that was mod-
ified to introduce new buffer overflow vulnerabilities.
Even stealthy attacks that do not execute system calls
from the stack could be detected.

¢ Trojan Horse and other code change¥/e used our

system to detect changes in the behavior of FTP, af-
ter inserting a few lines of code. The change modi-
fied the location of most instructions, even those that
corresponded to unchanged portions of code. Conse-
guently, almost every system call made by the mod-
ified server was from a different program location as
compared to the original server, thus leading to a con-
tinuous stream of anomalies. Note that, unlike other
approaches that do not use program counter informa-
tion, the FSA approach can detect changes to code
even before the changed portions are executed.

o Maliciously crafted input.Several attacks rely on in-
adequate checking done by programs on their input
data. By suitably altering the input (or command-line
argument) an attacker can cause the program to behave
unexpectedly. Our approach will detect these attacks,
since the attacks induce programs to execute unusual
sections of code and/or result in unusual system call 5
traces. As an example, we detected the site exec vul-
nerability in the FTP program.

only in terms of system call arguments. FSA aid
gram algorithms cannot detect such attacks, since there
are no changes to the system call sequences.

¢ Attacks that do not change behavior of attacked pro-

gram. Some attacks exploit errors of omission in the
attacked program, such as, race conditions, opening of
files without appropriate safeguards and checks, leav-
ing temporary files with critical information etc. Ex-
ploitations of these errors are accomplished using a
different program from the one containing the error,
and thus do not cause the “attacked program” to be-
have differently. A second class of attacks that do not
change program behaviors are those that exploit sys-
tem configuration errors (e.g., user writable password
file) or protocol weaknesses (e.g, SYN-flooding), and
do not cause programs to misbehave. All these attacks
are outside the scope of FSA andgram approaches.

o Certain classes of attacks launched with knowledge of

the intrusion detection techniques being usak.indi-
cated earlier that almost all buffer overflow attacks and
Trojan Horse programs can be detected by the FSA al-
gorithm. However, armed with the knowledge of how
the FSA-based intrusion detection approach works, it
is possible to develop successful buffer overflow at-
tacks, as well as Trojans.

Conclusions

In this paper, we presented a new technique for intru-

sion detection based on learning program behaviors. Our
: method captures program behaviors in terms of sequences
tacks do not cause new sections of code to be executedyt gystem calls, These sequences are represented using
but are characterized by repetitive execution of same ; finjte_state automaton. Unlike previous approaches, the
code. Such attacks can be detected by maintainingega approach does not limit either the number or length of
frequency-of-execution information with the automata system call sequences. (Even without such limits, our rep-
edges. resentation ensures that the size of FSA itself is bounded —

« Denial-of-Service AttacksMost DOS attacks cause in the worst case, |_ts size is linear in the size of the pro-
gram.) Moreover, it captures the looping and branching

server programs to execute some sections of their code

. structures of a program in a natural way, enabling it to rec-
very frequently. The FSA algorithm can be expected to . o' a prog : Y, ! 9
: L) ognize variations of behaviors learnt during training. The
detect them using frequency-of-execution information.

presence of program state information enables the FSA ap-
proach to perform more accurate detection of execution of
unusual sections of code. Its ability to focus on program
Behaviors (while ignoring library behaviors) contributes
shorter training periods and smaller storage requirements

¢ Dictionary or Password guessing attack3hese at-

Based on our classification [27] of attacks reported in the
CERT database, we note that the above classes of attack
account for about half of all attacks reported by CERT over

the past few years.

Our experimental results support the following conclu-

sions about the FSA method.

45.1 Attacks Not Detected

e Attacks that involve system call argument values.
Some attacks (e.g., attacks involving files accessed via
symbolic links) differ from normal program execution

¢ FSA-learning algorithms converge quicklyhe length
of training required is one of the most important cri-
teria for judging an anomaly detection technique. Our
experiments show that in absolute terms, FSA learning

www.manaraa.com

converges quickly. For FTP, NFS and HTTP server,
learning was completed after the servers used up sev-
eral minutes of CPU time.

False positive rate of the FSA algorithm is lokv.rel-
ative terms, the FSA algorithm produces much fewer
false positives than thé& -gram algorithm. Even the
absolute values are on the low side, corresponding to a
rate of10~* or less after a moderate period of training.
(On our web server, this would correspond to about 5
false positives a day.) In reality, the actual false posi-
tives experienced will be significantly lower, since itis
unlikely that isolated deviations from the FSA model
will be reported as attacks.

Space and runtime overhead of FSA-learning is min-
imal. Our experiments show that the space require-
ments for the FSA algorithm is low. Its runtime over-
head is also low.

FSA approach is effective in detecting attackdur
experiments show that the FSA approach can detect
a wide range of attacks.

Several further improvements to the method are still possi-

ble.

One promising avenue is the incorporation of frequency

information along with the transitions, so that we can de-

tect

and flag attacks that involve many transitions that are

associated with low probability of occurrence. Such an ap-
proach can detect many denial of service attacks.

A second avenue is the incorporation of system call ar-
gument values into the FSA. This extension will expand the [12]
set of attacks detectable by the approach to include many
filename related attacks, such as those involving symbolic
links.

References

[1]

(2]

(3]

[4]

D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A.
Valdes, Next-generation Intrusion Detection Expert
System (NIDES): A Summary, SRI-CSL-95-07, SRI
International, 1995.

CERT Coordination Center Advisories,
http://ww. cert.org/advisories/index.htm .

C. Cowan et al, StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks,
7th USENIX Security Symposium, 1998.

D. Endler, Intrusion Detection: Applying machine

[5]

S. Forrest, S. A. Hofmeyr, A. Somayaiji, Intrusion De-
tection using Sequences of System Calls, Journal of
Computer Security Vol. 6 (1998) pg 151-180.

[6] T. Fraser, L. Badger, M. Feldman Hardening, COTS

[7]

software with Generic Software Wrappers, Sympo-
sium on Security and Privacy, 1999.

D. Ghormley, D. Petrou, S. Rodrigues, and T. Ander-
son, SLIC: An Extensibility System for Commodity
Operating Systems, USENIX Annual Technical Con-
ference, 1998.

[8] A.K. Ghosh and A. Schwartzbard, A Study in Using

Neural Networks for Anomaly and Misuse Detection,
USENIX Security Symposium, 1999.

[9] A.K. Ghosh, A. Schwartzbard and M. Schatz, Learn-

[10]

[11]

[13]

[14]

[15]

[16]

ing Program Behavior Profiles for Intrusion Detection,
1st USENIX Workshop on Intrusion Detection and
Network Monitoring, 1999.

A.K. Ghosh, A. Schwartzbard and M. Schatz, Us-
ing Program Behavior Profiles for Intrusion Detection,
in Proceedings of the SANS Third Conference and
Workshop on Intrusion Detection and Response, 1999.

A. K. Ghosh, J. Wanken, and F. Charron, Detecting
anomalous and unknown intrusions against programs.
In Proceedings of the 1998 Annual Computer Secu-
rity Applications Conference (ACSAC '98), Decem-
ber 1998.

K. llgun, R. Kemmerer, and P. Porras, State Transi-
tion Analysis: A Rule-Based Intrusion Detection Ap-
proach, IEEE Transactions on Software Engineering,
March 1995.

K. Jain and R. Sekar, User-Level Infrastructure for
System Call Interposition: A Platform for Intrusion
Detection and Confinement, ISOC Network and Dis-
tributed Security Symposium, 2000.

M. Kearns and L. Valiant, Cryptographic Limitations
on Learning Boolean Formulae and Finite Automata,
ACM STOC, 1989.

C. Ko, G. Fink and K. Levitt, Automated detection
of vulnerabilities in privileged programs by execution
monitoring, Computer Security Application Confer-
ence, 1994.

A. Kosoresow and S. Hofmeyr, Intrusion detection via
system call traces, IEEE Software '97.

learning to solaris audit data, In Proceedings of the [17] S. Kumar and E. Spafford, A Pattern-Matching Model

1998 Annual Computer Security Applications Confer-
ence (ACSAC98).

for Intrusion Detection, Nat'l| Computer Security Con-
ference, 1994.

www.manaraa.com

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

C. Michael and A. Ghosh, Using Finite Automate to
Mine Execution Data for Intrusion Detection: A pre-

liminary Report, Lecture Notes in Computer Science
(1907), RAID 2000.

T. Mitchem, R. Lu, R. O’'Brien, Using Kernel Hyper-
visors to Secure Applications, Annual Computer Se-
curity Application Conference, December 1997.

W. Lee and S. Stolfo, Data Mining Approaches for
Intrusion Detection, USENIX Security Symposium,
1998.

R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman, Evaluating In-
trusion Detection Systems: the 1998 DARPA Off-
Line Intrusion Detection Evaluation, in Proceedings
of the DARPA Information Survivability Conference

and Exposition, 2000.

T. Lunt et al, A Real-Time Intrusion Detection Expert
System (IDES) - Final Report, SRI-CSL-92-05, SRI
International, 1992.

P. Porras and R. Kemmerer, Penetration State Transi-
tion Analysis: A Rule based Intrusion Detection Ap-
proach, Eighth Annual Computer Security Applica-
tions Conference, 1992.

P. A. Porras and P. G. Neumann, Emerald: Event mon-
itoring enabling responses to anomalous live distur-
bances, In Proceedings of the 20th National Infor-
mation Systems Security Conference, pages 353-365,
October 1997.

L. Pitt and M. Warmuth, The minimum consistency
DFA problem cannot be approximated within any
polynomial, ACM STOC, 1989.

L. Rabiner, A tutorial on Hidden Markov Models and
selected applications in speech recognition, Proceed-
ings of the IEEE, 1989.

R. Sekar and Y. Cai, Classification of
CERT/CC Advisories from 1993 to 1998,

http://secl ab. cs. sunysb. edu/ sekar/ papers/cert. htm

R. Sekar and P. Uppuluri, Synthesizing Fast Intrusion
Prevention/Detection Systems from High-Level Spec-
ifications, USENIX Security Symposium, 1999.

G. Vigha and R. A. Kemmerer, Netstat: A network-
based intrusion detection approach, In Proceedings
of the 1998 Annual Computer Security Applications
Conference (ACSAC’98), pages 25-34, Los Alamitos,
CA, December 1998, IEEE Computer Society, IEEE
Computer Society Press. Scottsdale, AZ.

[30] C. Warrender, S. Forrest, B. Pearlmutter, Detecting In

trusions Using System Calls: Alternative Data Mod-
els, 1999 IEEE Symposium on Security and Privacy,
May 9-12, 1999.

www.manaraa.com

